Kurdjumov, G. \& Lyssak, L. (1947). J. Iron Steel Inst. 156, 21.
Lehrer, E. (1930). Z. Elektrochem. 36, 460.
Marshail, W. W. (1947). Ph.D. Thesis, University of Durham.
Rooksby, H. P. (1942). J. R. Soc. Arts, 90, 673.

Sachsze, W. \& Juza, R. (1943). Z. anorg. Chem. 251, 201.

Snavely, C. A. \& Vaughan, D. A. (1949). J. Amer. Chem. Soc. 71, 313.
Trotiter, J. \& McLean, D. (1949). J. Iron Steel Inst. 9, 163.

Acta Cryst. (1950). 3, 394

A graphical method of indexing powder photographs of cubic substances and of determining unitcell dimensions. By J. C. de Wiss, Willem Smit and Co. Transformatorenfabriek N.V., Nijmegen, Netherlands.

(Received 4 April 1950)

This note describes a graphical method by means of which it is possible to determine, without any calculation, both the unit-cell dimension and the indices of the reflexions of cubic substances, when the positions of the diffraction lines on the powder photographs are known.

For the cubic system $\sin ^{2} \theta=\left(h^{2}+k^{2}+l^{2}\right) \lambda^{2} / 4 a^{2}$, while, for a cylindrical camera, the Bragg angle in degrees is given by $\theta=90 L / \pi R$. Here a represents the cell edge, L the distance between corresponding diffraction lines on opposite sides of the undiffracted X-ray beam, and R the diameter of the camera.

By plotting L as a function of a for a given value of $\left(h^{2}+k^{2}+l^{2}\right)$, we obtain a smooth curve, which gives for this particular choice of indices the relation between the position of the corresponding diffraction line on the photograph and the cell dimension. Doing so for many values of ($h^{2}+k^{2}+l^{2}$), we obtain a chart consisting of a large number of curves, from which we can read, conversely, the indices and the unit-cell dimension of the substance under investigation.

The reading of such a graph is carried out very simply by tracing on a strip of paper the measured values of L and by shifting this strip parallel to the L axis across the
chart until all marks coincide with the curves. Then for each reflexion the indices are known, while the intersection of the strip with the a axis gives the cell dimension.

Table 1 gives some unit-cell dimensions measured in this way on a graph of $60 \times 30 \mathrm{~cm}$. For these readings none of the usual corrections for the line positions has been made.

Table 1. Results of measurements of cell dimensions

	$a(\mathrm{~A}$.	
	Graphical	Experimental
Cu	$3 \cdot 66$	$3 \cdot 68$
AI	$4 \cdot 05$	$4 \cdot 04$
Ni	$3 \cdot 50$	$3 \cdot 52$
NaCl	$5 \cdot 60$	5•63
KI	$7 \cdot 05$	$7 \cdot 05$
CaF_{2}	$5 \cdot 45$	$5 \cdot 45$
CaTiO_{3}	$3 \cdot 85$	3.84

In using this method for measurements of cell dimensions, diffraction lines with a Bragg angle up to about 45° are especially suitable. The accuracy obtainable is about 0.5% of the measured value, and this method therefore cannot be used for very accurate unit-cell determinations.

Acta Cryst. (1950). 3, 394
The crystal structure of α-D-glucose. By T. R. R. McDonald and C. A. Beevers, Dewar Crystallographic Laboratory, Edinburgh University, Scotland.
(Received 27 March 1950)

In a series of papers published between 1931 and 1935, E. G. Cox and his co-workers gave details of the space groups and unit-cell dimensions of a large number of sugars and sugar derivatives. On the basis of this work, it was suggested that the pyranose ring comprised a nearly planar group of five carbon atoms with one oxygen atom out of the plane (Cox, Goodwin \& Wagstaff, 1935). Later work on glucosamine hydrobromide (Cox \& Jeffrey, 1939) and sucrose sodium bromide dihydrate (Beevers \& Cochran, 1947), however, proved the ring to be of the Sachse trans form. No other detailed structure determinations in the sugar series have been reported.

We have made a complete determination of the crystal structure of α-D-glucose. This work, though not yet sufficiently accurate for precise details of the bonding to be given, confirms the above findings relating to the trans configuration of the pyranose ring.

Crystal data

The crystals were grown from methanol solution at $18^{\circ} \mathrm{C}$., the largest being about 2 mm . in length. Class, orthorhombic bisphenoidal; space group, $P 2_{1} 2_{1} 2_{1}$; unit-cell dimensions,

$$
a=10.36 \pm 0.02, b=14.84 \pm 0.03, c=4.93 \pm 0.05 \mathrm{~A} .
$$

density, found $1.563 \mathrm{~g} . \mathrm{cm} .^{-3}$, calculated on the basis of 4 molecules of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ per unit cell $1.579 \mathrm{~g} . \mathrm{cm} .^{-3}$. The unit-cell measurements agree well with those of Hengstenberg \& Mark (1930), and of Sponsler \& Dore (1931). Sets of Weissenberg and oscillation photographs were taken about the three principal crystallographic axes, and the three Patterson projections and several sections at various z-levels were calculated. A correct interpretation of the projections led to the assignment of approximate x and y co-ordinates which were refined by successive Fourier syntheses. The z parameters were obtained very approxi-

